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Abstract. The paper deals with a numerical treatment of the dynamic hemivariational inequality
problem concerning the elastoplastic-fracturing unilateral contact with friction between neighboring
structures under second-order geometric effects during earthquakes. The numerical procedure is
based on an incremental problem formulation and on a double discretization, in space by the finite
element method and in time by the Houbolt method. The generally nonconvex constitutive contact
laws are piece-wise linearized, and in each time-step a nonconvex linear complementarity problem
is solved with a reduced number of unknowns.
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1. Introduction

As wellknown in earthquake engineering, seismic interaction among adjacent build-
ings is often a main cause of damages in seismically active regions, where, due
to various socioeconomic reasons, the so-called continuous building system is al-
lowed to be applied [1, 4, 10]. Thus the numerical estimation of the interaction
effects to the seismic response of such buildings is significant for their earthquake
resistant design, construction and repair.

Obviously the above interaction problem is very difficult from many aspects.
Mathematically this problem of pounding of buildings belongs to the inequality
problems of the mathematical theory of elasticity and of the structural mechan-
ics, where the governing conditions are equalities as well as inequalities, see e.g.
Panagiotopoulos [20-21], Nitsiotas [17], Maier [12,13]. These so-called unilateral
problems can be treated mathematically by the variational or hemivariational in-
equality concept, see e.g. Panagiotopoulos [18-21]. So, the seismic response of the
interacting structures system investigated here is governed by a set of equations
and inequalities, which is equivalent to a dynamic hemivariational inequality in the
way used by P.D. Panagiotopoulos. As wellknown, the hemivariational inequality
concept has been introduced into Mechanics and Applied Mathematics by P.D.
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Panagiotopoulos for first time in 1983, see [18], and constitutes now the basis of
the so-called Non-Smooth Mechanics.

As regards the numerical treatment of such inequality problems in earthquake
engineering and multibody dynamics, some numerical approaches have already
been presented, see e.g. [1, 10, 22, 24, 30].

In the present paper, a special case of seismic building interaction is treated nu-
merically. This case concerns the unilateral elastoplastic-softening contact between
adjacent structures under second-order instabilizing effects. So, the purpose here
is to estimate numerically and to control actively the influence of the interaction
effects on the seismic response of the adjacent structures. The latter can be ob-
tained by suitably adjusting the gap between the buildings (if it is possible, e.g. for
new constructions), and/or the contact material behaviour (hardening or softening)
according to the optimal control theory in structural analysis, see e.g. [3, 5, 8,
19, 31]. Finally, the method is applied to a civil engineering example of adjacent
buildings.

2. Method of analysis

A system of only two adjacent linearly elastic structures (A) and (B) is considered
here for simplicity. The extension to systems with more than two linear and/or
nonlinear elastic buildings can be done in a straightforward way.

2.1. UNCOUPLED SYSTEM ANALYSIS

First the system of the two structures (A) and (B), considered as an uncoupled one,
is discretized by the finite element method. So, assuming no interaction, the matrix
equations of dynamic equilibrium are

MLüL + CLu̇L +KLuL = −MLüg, (L = A,B), (1)

whereML,CL,KL are the mass, damping and stiffness matrices, respectively;u(t)

is the sought node displacement (relative to ground) vector corresponding to given
ground earthquake excitationug(t) and appropriate initial conditions; and dots
over symbols indicate time derivatives. Problem (1) can be solved by wellknown
methods of Structural Dynamics.

2.2. INTERACTION SIMULATION

Let jA andjB be two associated nodes on the interface (joint), where unilateral fric-
tional contact can take place during an earthquake. These nodes are considered (see
Liolios [11]) as connected by two fictive unilateral constraints, normal to interface
the first and tangential the second one. The corresponding force-reactions and re-
tirement relative displacements are denoted byrjN , zjN andrjT , zjT , respectively.
They satisfy in general nonconvex and nonmonotone constitutive relations of the
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following type (2), expressing mathematically the unilateral elastoplastic-softening
contact with friction:

rj (dj ) ∈ ∂Rj(dj ). (2)

Here∂ is the generalized gradient of Clarke,d the deformation andRj (.) is the
superpotential function, see e.g. Panagiotopoulos [20, 21] and [7, 15, 16, 25-27].
By definition, rel. (2) is equivalent to the following hemivariational inequality:

R
↑
j (dj , ej − dj ) > rj (dj ).(ej − dj ), (3)

whereR↑ denotes subderivative andej virtual deformation. In engineering ter-
minology, this inequality expresses the virtual work principle holding in inequality
form for unilateral constraints.

By piecewise linearizing these relations as in [9-13] we obtain the following
linear complementarity conditions:

rjN = pjN(zjN − gj + wj)+ cj zjN, (4)

wj > 0, rjN 6 0, wj .rjN = 0, (5a,b,c)

|rjT | 6 fj |rjN |, zjT .rjT = 0, (6a,b)

zjT .(|rjT | − fj |rjN |) = 0. (6c)

In rels. (4), (5)cj is the damping coefficient,pjN the reaction function for the
normal unilateral constraint,gj the existing normal gap andwj a non-negative
multiplier; in rels. (6)fj is the Coulomb’s friction coefficient. So, rels. (4) - (5) im-
pose that friction phenomena (slip or adhesion) can take place only when unilateral
contact occurs, i.e. when the compressive contact forcerjN is appeared.

2.3. COUPLED SYSTEMCONDITIONS WITH P-DELTA EFFECTS

Taking into account, now, the interaction and the second-order geometric effects
(P-Delta effects), we write the incremental dynamic equilibrium conditions for the
coupled system of the interacting buildings (A) and (B):

MA1üA + CA1u̇A + (KA +GA)1uA = −MA1üg + T A1r, (7a)

MB1üB + CB1u̇B + (KB +GB)1uB = −MB1üg + T B1r, (7b)

r = rN + rT . (7c)

HereGA andGB are the geometric stiffness matrices, by which P-Delta effects are
taken into account [2, 6, 12],T A andT B are transformation matrices, andr is the
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coupling vector of the normal and tangential interaction forces, satisfying (4),(5).
Appropriate initial conditions are taken into account, and so the problem consists
in finding the time-dependent vectors{uA, uB, g, z, r, w} which satisfy the rels.
(2)-(7) for the given earthquake excitationug(t).

2.4. TIME DISCRETIZATION AND PROBLEM SOLUTION

Further the problem of rels. (2)-(7) is discretized in time. Because this problem is
nonlinear – due to inequalities – the mode superposition method cannot be applied.
Thus, as suggested in [28], direct time-integration methods have to be used. Here
the Houbolt method is preferred to other implicit schemes and a suitable elimin-
ation of some unknowns is made. In each time-step we assume that the unilateral
constraints remain either active or inactive by adjusting suitably the time-step. To
compute what is happening, the procedure of Liolios [11] is applied. So, a noncon-
vex linear complementarity problem of the following form is eventually solved by
available algorithms [14–15, 23, 29]:

v > 0, Dv + d 6 0, vT .(Dv + d) = 0. (8)

Due to non-convexity of the interface behaviour (frictional unilateral contact, des-
cending branches in the relevant stress-deformation diagrammes etc., see e.g.
Fig. 1d for the numerical example of the next section), the matrixD does not
correspond to a strictly positive quadratic form. But the hemivariational inequality
(3), interpreted from the engineering point of view for the case of a stable system
(no collapse), means that the internal virtual energy of the coupled system is greater
of/or equal to external virtual work. So, using at every time-step the hemivariational
inequality (3) as a stability criterion , it can be proved that for most practical
applications in structural mechanics, the matrixD is a P-matrix. Thus a unique
solution of the nonconvex linear complementarity problem (8) can be assured [9,
12].

2.5. INFLUENCE COEFFICIENTS

Further, we introduce the influence coefficients

c = Qc −Qu

Qu
(9)

whereQ is the absolutely maximum value which takes a response quantity during
the seismic excitation. Index(c) is for the coupled system and index(u) for the un-
coupled one (i.e. without interaction). By the influence coefficientsc comparison is
made between the uncoupled and the coupled cases. Thus, these coefficients show
whether a structural element is overstressed or understressed due to interaction.
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Figure 1. Numerical example: a. Plan view of the system of buildings (A) and (B); b.
Vertical section view; c. Seismic ground displacement; d. Stress-deformation law for
the normal unilateral constraints; e. Stress-deformation law for the tangential unilateral
constraints

3. Numerical example

The system of the two one-storey buildings (A) and (B) of Fig. 1a,b are of re-
inforced concrete with elasticity modulusEb = 3∗107 KN/m2, slab thickness
0.25 m, damping ratio 5% and beams 30/80 cm connecting the columns tops peri-
metrically. The columns section is 30/30 cm for (A) and 40/60 cm for (B). The
stress-deformation law for the unilateral constraints normal to the interfaceJ − J
is estimated by experimental results to be given as in Fig. 1d, whereσc = 18 MPa,
and the friction coefficient in Fig. 1e for the tangential constraints is estimated as
fj = 0.40. The system is subjected to the horizontal ground seismic excitation
along the axisx − x, as depicted in Fig. 1c and mathematically expressed by the
relation:ug(t) = u0e

−2t sin(4πt) , with u0 = 10 mm.
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Table 1. Comparison of some response quantities

Building Quantity Uncoupled system Coupled system

Hx 902 KN 784.8 KN

(A) Hy 0 KN 87.3 KN

Mz 0 KNm 438.7 KNm

Hx 3071.9 KN 3302.5 KN

(B) Hy 588.3 KN 403.1 KN

Mz 12161.0 KNm 11543.4 KNm

Assuming no interaction, the building (A) is symmetric from the seismic point
of view and so appears transitional vibrations along the axis x-x only. On the
contrary, building (B) is an asymmetric one, and appears transitional as well as
torsional vibrations. So, when a seismic interaction takes place, building (A) will
also appear an asymmetric response.

In Table 1, the absolutely extremum values of some response quantities, oc-
curred during the earthquake excitation and computed by the herein presented
method, are shown indicatively. These quantities, necessary for the usual aseismic
design, are the horizontal forces (base shear forces)Hx andHy and the torsional
momentMz in the mass centers of the buildings (A) and (B). The relative values
are given for no interaction (uncoupled system) and for the case when frictional
interaction and P-delta effects are taken into account (coupled system). As the table
values show, the interaction effects in the second case are remarkable, especially
as regardsHy andMz.

4. Concluding remarks

Frictional seismic interaction under second-order effects, which is often not taken
into account in the usual Civil Engineering design of adjacent buildings, can change
significantly the earthquake response of such structures subjected to unilateral
contact. As in the numerical example has been shown, a numerical estimation of
the so caused seismic interaction effects can be obtained by the herein-presented
approach. Thus, the numerical procedure is realized by using available computer
codes of the finite element method and the nonlinear mathematical programming
(non-convex optimization algorithms).

Certainly the most complicated task, from the earthquake engineering point of
view, in all the above cases is the realistic simulation of the dynamic unilateral
contact behavior. To overcome this difficulty, experimental results can be used for
the rational estimation of parameters involved to simulate the interface behaviour
between adjacent structures. On the other hand, the herein presented numerical
approach can be used effectively to estimate numerically and to control actively
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the influence of the interaction on the seismic response of adjacent structures.
This can be obtained by using methods of the optimal control in order to adjust
the gap between the buildings and/or the contact material behaviour (hardening or
softening) of the structural interface elements.

Finally, it is necessary to be emphasized that the basis of the herein presen-
ted approach is the concept of the hemivariational inequalities, introduced into
Mechanics and Applied Mathematics by P.D. Panagiotopoulos, see [18–21]. These
inequalities constitute now the basis for the effective treatment of many unilateral
problems, and especially for the Non-Smooth Mechanics. Thus, after the sudden
passing away of Professor P.D. Panagiotopoulos at 12th of August 1998, it is here
proposed by the author (A. L.) thatthe hemivariational inequalities must be
called from now onthe Panagiotopoulos Inequalities.
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